Acids, Bases and Salts

Assertion & Reason Type Questions

Directions: Each of the following questions consists of two statements, one is Assertion (A) and the other is Reason (R). Give answer:

- a. Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).
- b. Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A).
- c. Assertion (A) is true but Reason (R) is false.
- d. Assertion (A) is false but Reason (R) is true.
- **Q1. Assertion (A):** Bases change red litmus solution into blue litmus solution.

Reason (R): Bases give hydroxide ions in aqueous solution.

Answer: (b) Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A).

Q2. Assertion (A): Clove oil is an olfactory indicator.

Reason (R): Smell of clove can be characterised in acidic medium, but it cannot be recognised in basic medium.

Answer: (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).

Q3. Assertion (A): Non-metallic oxides react with bases to form salt and water.

Reason (R): Non-metallic oxides are acidic in nature.

Answer: (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).

Q4. Assertion (A): Hydrochloric acid is a stronger acid than acetic acid.

Reason (R): On dissociation, hydrochloric acid yields lesser hydrogen ions for the same concentration as compared to acetic acid.

Answer: (c) Reason (R) is false because on dissociation, HCL yields more hydrogen ion for the same concentration as compared to acetic acid.

Q5. Assertion (A): Strength of acid or base decreases with dilution.

Reason (R): Ionisation of an acid or a base increase with dilution.

Answer: (b) Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A).

Q6. Assertion (A): To dilute concentrated sulphuric acid, water is added to the acid slowly.

Reason (R): A lot of heat energy will be given out in the dilution of concentrated sulphuric acid.

Answer : (d) Assertion (A) is false because to dilute con-centrated sulphuric acid, acid must always be added slowly to water with constant stirring.

Q7. Assertion (A): Sodium hydrogen carbonate is used as an ingredient in antacids.

Reason (R): NaHCO₃ is a mild non-corrosive basic salt.

Answer: (b) Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A).

Q8. Assertion (A): During electrolysis of concentrated aqueous solution of sodium chloride, chlorine gas is given off at the cathode and hydrogen gas at the anode.

Reason (R): lons in electrolytes are attracted to the oppositely charged electrodes.

Answer: (d) Assertion is false because in this process, chlorine is given off at anode and hydrogen gas at cathode.

Q9. Assertion (A): Plaster of Paris should be stored in a moisture proof container.

Reason (R): Plaster of Paris is a powdery mass that absorbs water to form a hard solid, gypsum.

Answer: (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).

Q10. Assertion (A): The acid must always be added to water with constant stirring.

Reason (R): Mixing of an acid with water decreases the concentration of H+ ions per unit volume.

Answer: (b)

Q11. Assertion (A): Copper sulphate crystals are wet because it contains water of crystallisation.

Reason (R): Water of crystallisation is the fixed number of molecules of water present in one formula unit of salt.

Answer: (d) The Assertion is false. Copper sulphate is not wet. It is an hydrated salt, as it contains water molecules.

Q12. Assertion (A): The aqueous solutions of glucose and alcohol do not show acidic character.

Reason (R): Aqueous solutions of glucose and alcohol do not give H+ ions.

Answer: (a)

Q13. Assertion (A): HCl gas does not change the colour of dry blue litmus paper.

Reason (R): HCl gas dissolves in the water present in wet litmus paper to form H+ ions.

Answer: (a)

Q14. Assertion (A): Weak acids have low electrical conductivity.

Reason (R): Strong acids and weak acids have equal concentration of hydrogen ions in their solutions.

Answer: (c)

Q15. Assertion (A): Pure water is neither acidic nor basic.

Reason (R): The pH of a solution is inversely proportional to the concentration of hydrogen ions in it.

Answer: (b)

Q16. Assertion (A): During electrolysis of concentrated aqueous solution of sodium chloride, hydrogen is produced at anode and chlorine gas is produced at cathode.

Reason (R): Ions get attracted to oppositely charged electrodes.

Answer: (d)

Q17. Assertion (A): Baking powder is used in making cake instead of using only baking soda.

Reason (R): Baking powder contains tartaric acid which reacts with sodium carbonate and removes bitter taste.

Answer: (a)

Q18. Assertion (A): The chemical formula of bleaching powder is CaOCI.

Reason (R): Calcium oxide reacts with chlorine to form bleaching powder.

Answer: (c)

Q19. Assertion (A): Plaster of Paris is stored in a moisture proof container.

Reason (R): Plaster of Paris sets into a hard mass on wetting with water to form anhydrous calcium sulphate.

Answer: (c)

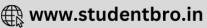
Q20. Assertion (A): The chemical name of bleaching powder is calcium oxychloride.

Reason (R): Bleaching powder is used as an oxidising agent in chemical industries.

Answer: (b)

Q21. Assertion: The process of dissolving an acid or a base in water is highly exothermic reaction.

Reason (R): Water must always be added slowly to acid with constant stirring.


Answer: (c) The process of dissolving an acid or a base in water is highly exothermic reaction. Acid must always be added slowly to water with constant stirring.

Q22. Assertion (A): Phenolphthalein is an acid-base indicator.

Reason (R): Phenolphthalein gives different colours in acidic and basic medium.

Answer: (a)

Q23. Assertion: Calcium sulphate hemihydrate, CaSO4.1/2 H20 is called plaster of Paris.

Reason (R): Plaster of Paris is used for producing moulds for pottery and ceramics and casts of statues.

Answer: (b)

Q24. Assertion (A): pH = 7 signifies pure water.

Reason (R): pH of acetic acid is greater than 7.

Answer: (c) pH of acetic acid is less than 7.

Q25. Assertion (A): HCl is a stronger acid than acetic acid.

Reason (R): On dissociation, HCl yields lesser hydrogen ions for the same concentration as compared to acetic acid.

Answer: (c) On dissociation, HCl yields more hydrogen ions for the same concentration as compared to acetic acid.

Q26. Assertion (A): pH of ammonium nitrate solution is acidic.

Reason (R): Solution of a salt of weak base and strong acid is acidic.

Answer: (a) Ammonium nitrate is a salt of ammonium hydroxide (weak base) and nitric acid (strong acid).

Q27. Assertion (A): Phosphoric acid is a weak acid.

Reason: Phosphoric acid when dissolved in water dissociates partially and produces very little H* ions.

Answer: (a)

Q28. Assertion (A): Antacids neutralize the effect of extra acid produced in the stomach during indigestion and thus provide relief.

Reason (R): Antacids are mild bases.

Answer: (a)

Q29. Assertion (A): Acetic acid does not act as an acid in benzene solution.

Reason (R): Benzene is non-polar.

Answer: (a) For ionization of an acid, polar solvents (like water) are required. As ionization does not take place in non-polar solvents (like benzene) so acetic acid does not acts as an acid.

Q30. **Assertion (A):** Bleaching powder reacts with dilute acids to evolve chlorine.

Reason (R): The chlorine liberated by the action of dilute acids on bleaching powder is called available chlorine.

Answer: (b)

Q31. Assertion (A): Sodium carbonate pentahydrate is also known as washing soda.

Reason (R): Chief raw materials for the manufacture of washing soda are NH3, NaCl and CaCO3.

Answer: (d)

Q32. Assertion (A): Common salt is used for the preparation of many chemicals such as sodium hydroxide, bleaching powder, baking soda, washing soda etc.

Reason: Main source of sodium chloride is sea water.

Answer: (b)

Q33. Assertion (A): AlCl3 is a basic salt.

Reason (R): AlCl3 is a salt of strong acid and a weak base.

Answer: (d)

Q34. Assertion (A): Baking soda is prepared by chlor-alkali process.

Reason (R): Brine decomposes to sodium hydroxide on passing electricity through it.

Answer: (d)

Q35. Assertion (A): Salt of KNO3 is formed by strong base and weak acid.

Reason (R): Salt of NH4Cl is formed by weak base and strong acid.

Answer: (d)

Q36. Assertion (A): Strength of the acid or base decreases with dilution.

Reason (R): Ionization of an acid or a base increases with dilution.

Answer: (b)

Q37. Assertion (A): Higher the H ion concentration, lower is the pH value.

Reason (R): The pH of a neutral solution=7, that of a basic solution < 7 and that of an acidic solution > 7.

Answer: (c)

Q38. Assertion (A): CH3COOH is used as vinegar in cooking and food preservatives.

Reason (R): Strong acids are those acids which ionise almost completely in aqueous solution and hence produce a large amount of Hions.

Answer: (b)

Q39. Assertion (A): Tooth decay starts when the pH of the mouth is lower than 5.5.

Reason (R): Enamel starts corroding below 5.5 pH.

Answer: (a)

